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Abstract. Self-consistent hybrid MC/RISM method is used for calculating properties of a linear polymer
surrounded by colloidal particles with purely repulsive, hard-core, interactions between the particles and
chain beads. Our approach combines the traditional atomistic Monte-Carlo (MC) simulation of flexible
polymer chains with the numerical solution of the site-site Ornstein-Zernike-like (RISM) integral equations.
Since the condensed-phase environment of a flexible macromolecule affects the equilibrium configuration
probability distribution of the macromolecule, the site-site intramolecular correlation function and the
intramolecular potential field are treated in a self-consistent manner. It is shown that in such an athermal
system the medium-induced collapse of a polymer (similar to polymer collapse in a poor solvent) may
occur. Our analysis yields a simple “entropic” interpretation of this transition. We present the detailed
study of the dependence of conformational properties of the chains on the degree of polymerization, density
and size of colloidal particles.

PACS. 02.30.Rz Integral equations – 61.25.Hq Macromolecular and polymer solutions; polymer melts;
swelling – 82.70.Dd Colloids

1 Introduction and overview

The understanding of structure and physical properties
of polymer-containing colloidal dispersions is important
both from theoretical point of view and from the view-
point of numerous practical applications. Great amount
of experimental evidence exists for the effective attraction
of colloidal particles induced by small polymeric additives
to colloidal dispersions. The effect is well pronounced even
in the absence of the adsorption of polymer chains on the
surface of particles [1]. The effective attraction between
colloidal particles perturbs their homogeneous spatial dis-
tribution and, in some of cases, can lead to coagulation
(flocculation) of a dispersion. It is evident that in the
absence of energetic effects the entropy effects must be
responsible for the process. In the colloid science, this phe-
nomenon is called depletion flocculation [1].

The simplest theoretical models of the depletion floc-
culation have been considered (see, e.g., Refs. [1–3]). The
athermal mixtures of hard-core particles and polymer
chains were theoretically studied by Frenkel and coworkers
[4,5] (see also the review [6]). Their microscopic approach
is based on a recursive scheme that permits calculation of
the partition function of an ideal (non-self-avoiding) poly-
mer chain on a lattice in an arbitrary external potential
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[7,8]. This scheme was used as a starting point to study
self-avoiding polymers. According to references [4–8], in
the systems with bare hard-core potential there is an ef-
fective polymer-induced attraction between the particles.
Another approach to the problem under discussion was
proposed in our recent work [9], where a microscopic the-
ory of the mixtures of polymer chains and colloidal par-
ticles was developed on the basis of the RISM (Reference
Interaction Site Model) integral equation technique. It was
found that in the athermal regime there is a consider-
able effective attraction between the small hard-spherical
particles in a wide range of polymer number density ρp.
According to reference [9], at fixed density of colloidal par-
ticles ρd, the partial reduced compressibility of the dis-
persed component, χ∗d ≡ kBTρd χd, increases rapidly with
ρp from χ∗d < 1 to χ∗d > 1; however, with further increase
in ρp the value of χ∗d decreases gradually. As can be shown,
in the limit of large ρp at ρd � 1 and Np → ∞ we must
have χ∗d → 1. This means that the large-scale proper-
ties of the dispersed component coincide with those of an
ideal reference system. This is due to a complete screen-
ing of the bare hard-core potential by long chains in an
extremely dense, incompressible and defectless polymer
matrix (see also the qualitative arguments of de Gennes
[10]). Thus, our approach also confirms the important role



882 The European Physical Journal B

of the purely entropic (or, in other words, sterical) effects
in the problem under consideration.

The problem of entropy-induced effects could be re-
garded from another viewpoint. We can formulate the fol-
lowing question: how does the medium consisting of hard
impenetrable particles affect the equilibrium conforma-
tions of a polymer chain? Unfortunately, the version of the
RISM-theory developed in reference [9] does not allow us
to solve this problem. The point is that the approach used
in reference [9] is based on the Gaussian approximation for
the intrapolymer pair correlation function, wαβ(|r − r′|),
which gives the probability that polymer sites α and β are
at a distance r = |r − r′|. The Gaussian (“ideality”) as-
sumption (or the so-called Flory “ideality” postulate) has
been demonstrated to be highly accurate for homopoly-
mer melts, where the excluded volume intrapolymer
interactions are effectively screened by intermolecular in-
teractions. For dilute (or semidilute) polymer systems,
however, large deviations from ideality occur [10], and
thus the condensed-phase modification of the intramolec-
ular interactions and the equilibrium conformation must
be taken into account. Moreover, the equilibrium polymer
conformation and the local arrangement of surrounding
particles must be treated in a self-consistent manner.

The structure of binary polymer-containing mixtures
may, in principle, be predicted by “direct” computer sim-
ulations using Monte-Carlo (MC) or molecular dynamics
(MD) methods. However, among all polymer systems the
dilute polymer systems with highly asymmetric size ratio
γ = σd/σp � 1 (σp, σd = diameters of polymer units and
particles) are the most “inconvenient” for direct simula-
tions. The point is that for highly asymmetric mixtures,
when the size ratio γ differs considerably from 1, seri-
ous ergodicity problems arise, even at γ ≈ 3 [11]. Never-
theless, very recently Monte-Carlo computer simulations
of such systems (hard-core, athermal, polymer solutions)
were carried out for lattice models [12–14]. These simula-
tions presented evidence for the entropy-driven polymer
chain collapse in an athermal solvent in the absence of
attractive interactions, when the size of solvent particle
is larger than the size of polymer links. However, as has
been pointed out in reference [14], the situation could,
in principle, be different in continuous space. The be-
havior of highly asymmetric off-lattice athermal polymer-
containing mixtures, to our knowledge, has not yet been
studied in the literature. Thus, work in this direction is
of interest. Taking into account the problems of direct off-
lattice simulations of such systems, in the present study
we will use an extended (self-consistent) version of the
RISM theory.

The generalization of the RISM approach to the self-
consistent calculations of the correlation functions and
the medium-induced intramolecular potential has been
initiated by Chandler and coworkers [15–17] (see also
Refs. [18–30]). This approach was originally developed
to study a system of ideal point fermions (which can be
viewed as “non-interacting electrons”). It has been shown
that there is an analogy between this system and the “con-
formation” changes of the zero-thickness ideal “polymer”.

The analogy is based on the fact that in the framework of
Feynman’s path-integral formalism there is a mathemati-
cal isomorphism between a quantum-mechanical solvated
electron and a polymer system. It is natural to expect
that the behavior of ideal polymers surrounded by mas-
sive colloidal particles is similar to that of quantum par-
ticles in a classical fluid. As has been found in reference
[16], at particular conditions one observes the localiza-
tion of an excess electron in a hard-sphere fluid; in other
words, there is a ground state for an ideal “polymer” in the
presence of an external field produced by hard particles.
This transition is an entropy-driven one, because there
are no attractive forces in the system. Another example
of an entropy-driven transition has been studied by Alavi
and Frenkel [31]. They considered mixtures of ideal point
fermions and atoms (effectively hard spheres) and found
evidence for a demixing transition as the chemical poten-
tial of the fermions is increased beyond a certain critical
value. Using the thermodynamically self-consistent inte-
gral equations, Biben and Hansen [32] observed a spin-
odal instability at high densities for binary hard sphere
mixtures with the diameter ratio larger than 5.

The atomistic treatment of dense molecular systems
is based on the reference interaction site model integral
equation theory [33–35] originally developed for small
rigid molecules. In the past, Curro and Schweizer [36–38]
proposed an extension of this approach to the equilib-
rium properties of dense polymer liquids (homopolymer
melts). In order to make the application of the RISM the-
ory to the flexible, high polymer liquid mathematically
tractable, they assumed that a polymer chain in the melt
has a configuration characteristic of a chain in a Θ sol-
vent, i.e., the intrachain pair correlation function w(r)
satisfies the Gaussian approximation. The method gives
fairly good results at high densities of polymer. However,
as has been mentioned above, the ideality assumption is
not valid in the case of dilute polymer systems. In this
situation we employ a combination of direct MC simula-
tion and the numerical solution of RISM integral equa-
tions. We will call this approach “the hybrid MC/RISM
method”. Briefly, the MC technique is applied to gener-
ate the configurations of a single chain molecule. Using
the coordinates of chain beads, the averaged intrapolymer
correlation function is obtained. Then, solving the RISM
equations for a given density of colloidal particles, we
find the polymer-particle correlation functions. It yields
the medium-induced intrapolymer potential and the corre-
sponding effective intramolecular energies, which are used
in the standard Metropolis MC procedure. The structural
properties of the chain are computed by averaging over the
statistically representative set of configurations. As a re-
sult of many such iterations, the intramolecular structure
is determined self-consistently. Note that the concept of
effective medium-induced potential [15–17] has been used
to study one-component polymer systems (polymer melts)
[24–30]. In the present work, this concept is used to study
polymer-containing (bicomponent) colloid systems.

In the next section we give a description of the hy-
brid MC/RISM scheme for the two-component system
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consisting of a flexible polymer chain and hard particles.
Here we also outline the pearl-necklace model used to sim-
ulate a flexible linear polymer chain. In Section 3, we
present our results; their discussion is presented in Sec-
tion 4. In the final section we summarize the conclusions.

2 Computational procedure

Following Chandler and Andersen [33–35], for an arbitrary
one-component system consisting of identical N -atomic
molecules we can write the generalized site-site Ornstein-
Zernike (SSOZ) or RISM integral matrix equation

H(r)=

∫
dr′
∫
dr′′W(|r−r′|)C(|r′−r′′|)[W(r′)+ρH(r′′)].

(1)

Here, r = |rα−rβ| is the distance between sites (atoms or
groups) α and β located on the different molecules inter-
acting via the pair potential u(r); ρ is the number density
of molecules; H(r) is the matrix of total intermolecular
site-site pair correlation functions hαβ(r); C(r) is the cor-
responding matrix of direct correlation functions cαβ(r);
W(r) denotes the matrix of intramolecular site-site dis-
tribution functions wαβ(r); and α, β = 1, 2, ..., N . For a
system of single-site (spherical) particles, i.e., at N = 1
we have w(r) = 1. It is natural to consider the colloidal
subsystem as a set of spherical particles at a given number
density ρd = nd/V , nd being the number of particles in
volume V . Thus, using the subscript dd′ to identify the
corresponding pair correlations and the symbol ∗ to de-
note integral convolution, we have

hdd′(r) = cdd′(r) + ρdcdd′(r) ∗ hdd′(r). (2)

As to the polymer component, we adopt the approxima-
tion made by Curro and Schweizer [36–38]. In this ap-
proximation (the so-called PRISM (polymer-RISM) ap-
proximation), all sites in a long linear polymer chain are
considered as equivalent. In other words, the main idea
is to go from partial site-site correlation functions to the
collective or preaveraged (molecular) functions (see also
Ref. [9]). For example, we can write

w(r) =
1

N

N∑
α=1

N∑
β=1

wαβ(r), (3)

h(r) =
1

N2

N∑
α=1

N∑
β=1

hαβ(r). (4)

Hence, using the subscripts p and pp′ to identify density
and molecular correlation functions of the polymer com-
ponent, we have

hpp′(r) = w(r) ∗ cpp′(r) ∗ [w(r) + ρdcpp′(r) ∗ hpp′(r)] (5)

where ρp = Nρ is the monomer number density and ρ is
the system number density of N -unit polymer chains.

To take into account correlations of the polymer-
particles type, it is necessary to introduce two additional
“mixed” total, hdp(r) and hpd(r), and direct, cdp(r) and
cpd(r), correlation functions. From the complete set of cor-
relation functions, it is convenient to combine the matrices
H(r) ≡ [hij(r)] and C(r) ≡ [cij(r)], where i, j = d, p.
In addition we define two diagonal matrices W(r) ≡

diag[wi(r)] and D ≡ diag[ρ
1/2
i ], with i = d or p. We then

can write the following integral matrix equation [9,38]

DHD = W ∗ (DCD) ∗ [W + DHD] (6)

where ∗ denotes matrix convolution product. Further, we
consider the limit of this equation for a polymer “solute”
at infinite dilution (i.e., at ρp → 0) and obtain the follow-
ing set of coupled integral equations [9,38]

hdd′(r) = cdd′(r) + ρdcdd′(r) ∗ hdd′(r) (7)

hpd(r) = w(r) ∗ cpd(r) ∗ [1 + ρdhdd′(r)] (8)

hpp′(r) = w(r) ∗ cpp′(r) ∗ w(r)+ρdw(r) ∗ cpd(r) ∗ hdp(r).
(9)

With appropriate closure approximation relating the cij
to the hij we can solve these equations sequentially.

Note that in the approach considered above the low-
molecular-weight solvent surrounding both polymer and
colloidal particles is treated as a “free volume” and, thus,
an effectively two-component description of the three-
component system under study is applied.

For a single-site solute in a solvent, the potential of
mean force (PMF) between two particles α and β is given
by

Ψαβ(r) = −kBT ln[hαβ(r) + 1]. (10)

To describe site-site interactions within a polyatomic
molecule, we use the two-site-pairwise additive approx-
imation for the total N -site intramolecular solvent-
mediated potential ∆Ψ

∆Ψ(r1, ..., rN ) =
N∑
α<β

Ψαβ(r) (11)

where ∆Ψαβ(r) are the corresponding two-site (pair) com-
ponents. Note that pairwise additive approximation (11)
is applicable to chain molecules with fairly good accu-
racy [39]. It is even more so if the appropriate model for a
chain is employed, namely, the model in which nonoverlap-
ing neighboring beads are well separated along the chain
backbone [39].

Considering the behavior of solvated electron, Chan-
dler, Singh, and Richardson [15] (see also Refs. [16–22])
obtained the following solvent-mediated potential

∆Ψαβ(r) = −kBTcαd(r) ∗ χdd′(r) ∗ cd′β(r) (12)

where χdd′(r) is the pure solvent (medium) site density
pair correlation function. For the monoatomic medium,
χdd′(r) = ρd[1 + ρdhdd′(r)], where ρd is the bulk density.
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Note that potential (12) corresponds to the hypernetted-
chain (HNC) closure

c(r) = h(r)− ln[h(r) + 1]− u(r)/kBT. (13)

Recently Grayce and Schweizer [23] proposed a new ap-
proximate solvatation potential

∆Ψαβ(r) = −kBT ln[1 + cαd(r) ∗ χdd′(r) ∗ cd′β(r)] (14)

which was called a “Percus-Yevick-style” solvatation po-
tential; it corresponds to the Percus- Yevick (PY) closure

c(r) = [h(r) + 1]
f(r)

f(r) + 1
(15)

where f(r) = exp[−u(r)/kBT ]− 1 is the Mayer function.
In the present study, we use both potentials (12) and (14).
For the bicomponent system “polymeric chain + parti-
cles”, the function ρ−1

d χdd′(r), which is the r-space rep-
resentation of the structure factor Sdd′(q), is obtained by
solving equations (7) and (13) or (15). Substitution of χdd′
into equation (8) gives cpd. Having χdd′ and cpd, we can
calculate the effective intrachain interaction ∆Ψαβ(r) be-
tween chain sites α and β separated by distance r.

As is seen from equation (8), the direct correlation
function cpd depends on the intrachain correlation func-
tion w(r), i.e., on the specific conformation of the whole
chain. In other words, cpd is a nonlinear functional of w(r).
Consequently, the effective intrachain potential ∆Ψαβ(r)
also depends on w(r). Hence, for given external param-
eters (ρd, T and so on), the potential ∆Ψαβ(r) depends
not only on the argument r but on the spatial localiza-
tion of all the other sites (monomers) of a chain as well.
As a result, the probability of any given chain conforma-
tion in a dense medium depends on the whole intrachain

potential, Ψ(r1, ..., rN ) =
∑N
α<β [uαβ(r) + ∆Ψαβ(r)]. In-

troducing the notation Ω(r1, ..., rN ) for the equilibrium
conformation probability distribution function of a single
N -site polymer chain in an external field produced by sur-
rounding medium, we have

Ω(r1, ..., rN )=Z−1exp{−Ψ [r1, ..., rN ;w(r1, ..., rN )]/kBT}
(16)

where Z is the normalization integral. The distribution
Ω(r1, ..., rN ) gives the intrachain distribution function av-
eraged over all polymer conformations:

w(r) =
1

N

N∑
α,β

[δαβδ(r) + (1− δαβ)

×

∫
dr1...drN δ(r − rαβ)Ω(r1, ..., rN )]. (17)

Here, δ(r) is the Dirac delta-function. Substitution of w(r)
from equation (17) to equation (8) permits to find the in-
termolecular pair correlation functions cpd and hpd (pro-
vided the corresponding density-density correlation func-
tion χdd′ of pure solvent (medium) has been previously
found for given conditions). Then the medium-induced

interaction potential ∆Ψαβ is determined from equations
(12) or (14). Finally, it is used in equations (16, 17) to
calculate w(r). Thus, we obtain the self-consistent proce-
dure for calculation of chain equilibrium conformation in
the external field, and this field itself depends on the spe-
cific equilibrium conformation of the chain. From another
viewpoint, this procedure can be regarded as an algorithm
for calculation of the self-consistent medium-induced site-
averaged intramolecular potential of a flexible molecule
with internal degrees of freedom

∆Ψ(r) =
1

N2

N∑
α,β

∫
dr1...drN∆Ψαβ(r)Ω(r1, ..., rN ). (18)

As can be seen from equations (17, 18), calculation of the
equilibrium functions w(r) and ∆Ψ(r) implies calculation
(or estimation) of 3N -dimensional integrals. In the present
article, this is made via Monte-Carlo simulation.

Suppose that the bare potentials udd(r), upd(r), and
upp(r) describing the interactions between colloidal parti-
cles and polymeric units are specified and the density of
particles ρd and temperature T are given. Let us also sup-
pose that the chain model and the method of generation of
chain conformations are chosen. Then the self-consistent
MC/RISM scheme should consist of the following steps:

Step 0

(a) An initial chain configuration, {r} ≡ {r1, ..., rN}, is
obtained.

(b) Using one of the closure equations (Eqs. (13) or (15)),
the OZ equation (Eq. (7)) is solved for the medium
particles; this gives the correlation function χdd′ .

(c) Potential ∆Ψαβ(r) is set equal to zero.
(d) The iteration counter s is set to s = 0.

Step 1

(a) The set of k chain configurations is generated by MC
method. The “move” {r} → {r′} is accepted according
to the standard Metropolis criterion with the transi-
tion probability

P = min

{
1, exp

[
Ψ({r})− Ψ({r′})

kBT

]}
(19)

where

Ψ({r}) =
N∑
α<β

[upp(rαβ) +∆Ψ(rαβ)]. (20)

(b) For the latest kth configuration {r}k obtained as a
result of “Step 1a”, the intrachain correlation function
wk(r) is evaluated.

(c) The m-time repetition of the points (a) and (b) pro-
vides data for an intermediate averaged function

wm(r) = m−1
m∑
k

wk(r) (21)

and its Fourier transform ŵm(q).
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Step 2

(a) The function ŵm(q) is used in the Fourier q-space rep-
resentation of equation (8),

ρdĥpd(q) = ŵm(q)ĉpd(q)χ̂dd′(q). (22)

Using closure approximations (13) or (15) relating the
cpd to hpd and udp, we obtain the correlation functions

ĉpd(q) and ĥpd(q) from equation (22).
(b) Substitution of ĉpd(q) and χ̂dd′(q) into equations (12)

or (14) provides the evaluation of the effective poten-
tial (averaged over all N chain units) in the q-space

∆Ψm(q) = −kBT ĉpd(q)χ̂dd′(q)ĉd′p(q) (23)

or

∆Ψm(q) = −kBT ln[1 + ĉpd(q)χ̂dd′(q)ĉd′p(q)]. (24)

(c) The function ∆Ψm(q) is transformed to ∆Ψm(r).

Step 3

(a) The iteration counter s is increased by unity: s = s+1.
(b) The current mean value of the effective potential is

calculated

∆Ψs(r) = s−1
s∑
m

∆Ψm(r). (25)

(c) The potential ∆Ψ(r) in equation (20) is replaced by
the new one: ∆Ψ(r) = ∆Ψs(r).

(d) The convergence of the iteration procedure is exam-
ined together with the achievement of the accuracy
needed for the evaluated characteristics. The calcula-
tions returns to “Step 1” if the certain accuracy is not
obtained.

In accordance with the objectives of the present study
stated above we consider here the simplest athermal model
of a bicomponent system. We consider colloidal particles
as mutually impenetrable hard spheres of diameter σd; nd
such particles are placed in volume V , so that the number
density is ρd = V/nd and the volume fraction of particles is
Φ = πσ3

dρd/6. Similarly the polymeric units are regarded
as hard spheres (beads) of diameter σp. This implies that
we restrict interactions in our system to the simplest hard-
core potential

uij(r) =

{
∞, if r < σij
0, if r ≥ σij

(26)

where σij = (σi+σj)/2, and r is the distance between the
corresponding interacting sites i and j (i, j = d or p).

We use a simple model of a flexible linear macromole-
cule with excluded volume interaction. This model (usu-
ally called bead or pearl-necklace model) is standard in
polymer physics (see for example, Refs. [40,41]). The chain

Fig. 1. Schematic representation of the system “polymer chain
+ colloidal particles” and the continuous bond-fluctuation
model (CBFM) of a polymer chain.

consists of N identical hard-sphere beads with a diame-
ter σp. Their centers are connected in a chain-like manner
by the volumeless “threads”, i.e., bonds. The bond length
b is not strongly fixed and may fluctuate in some range
(1 ± ∆)b with the average being approximately equal to
the prescribed value of b (∆ is the bond gap). In this
aspect, the model resembles the well-known lattice bond
fluctuation model, but, not being constricted to any lat-
tice, it permits continuous motions for chain units. That
is why we call it the continuum bond fluctuation model
(CBFM). The average bond length 〈b〉 is determined by
an appropriate choice of the parameters b and ∆. In the
present study we accepted b = 5σp/2 and ∆ = 3σp/2 since
this provides sufficient displacement of the chain beads. It
should be noted that these values of b and ∆ do not pre-
vent self-intersection of the chain. However, as was noted
above, if the mean distance between beads is large enough
this diminishes deviations from the pairwise additivity in
the N -site medium-induced potential ∆Ψ . This choice of
the parameters also provides very quick conformational re-
laxation of a chain. The corresponding model will be called
“Model 1”. This model is implied everywhere if the oppo-
site is not explicitly indicated. Figure 1 gives a schematic
representation of the model. Besides, in order to mimic a
tangent hard-sphere chain model, we consider the bond
fluctuation chains with b = σp. This value of b allows
bonded beads to inter-penetrate by an amount equal to
the bond extension ∆ but does not practically allow bond
crossing. This model will be called “Model 2”. In addition,
calculations for the chains with some other bond lengths
were carried out. For all the models, the bead diameter σp
was set to 0.2. At σp = 0 and ρd = 0, the chains behave
ideally and obey Gaussian or random-walk statistics. For
a Gaussian chain, the mean end-to-end distance behaves
as 〈R2(N)〉 = 〈(r1 − rN )2〉 = 〈b2〉(N − 1).

An initial chain conformation is generated as a self-
avoiding random walk. Starting from the initial confor-
mation, we randomly pick bead α with the position vec-
tor rα and try to move this bead in a randomly chosen



886 The European Physical Journal B

direction r′α = rα + δ, where 0 ≤ |δ| ≤ 0.2. The trial posi-
tion r′α in the Monte-Carlo algorithm is accepted only if
neither the restriction on the allowed range of the bond
length nor the excluded volume constraint are violated.
Of course, it is straightforward to include effects due to
an intrachain medium-induced interaction energy into this
algorithm (see Eq. (19)). All the beads of our chain (ex-
cluding the adjacent ones) interact in a pairwise way via
the ∆Ψ potential. Time t is measured in Monte-Carlo
steps per bead. One MC step (MCS) means that on av-
erage each chain bead has attempted to move once, suc-
cessfully or unsuccessfully. For the isolated chains with
excluded-volume interactions between elements of the
chain, the mean size of the chain R grows as Nν , where
ν ≈ 0.6, in agreement with polymer theories [10,40,41].

The RISM equations were solved using the modi-
fied Picard iteration scheme [42], but the variational and
mixed Newton-Raphson techniques are possible as well.
The method of fast Fourier transformation (FFT) was
used for calculation. The number of integration points was
L = 210÷ 212, both in the r and q variables. The step size
∆r = Rc/L was 0.05 or 0.025. Note that Rc must be
Rc > 〈b〉(N − 1). The integral equations were solved for

γ̂(q) = ĥ(q)− ĉ(q). The iterations are performed until the
self-consistency condition

|1− γout(r)/γin(r)| < 10−6 (27)

is satisfied.
For an ideal N -unit chain (random walk) a longest re-

laxation time (Rouse time) scales as τN ∝ N2 [10,41]. In
the MC simulation, τN is the number of attempted moves.
Following this estimate we set k = N2 for “Step 1a”. As
for the value of m in equation (21), this number is cho-
sen to be m = 1000 for all N considered. Thus, the total
number of MC moves for one of the self-consistent itera-
tion was km = 1000N2 for each chain length and density
ρd. The ŵ(q) was averaged over these configurations and
then used in the RISM theory to obtain the intermolecular
correlations and a new medium-induced potential.

In the course of calculations, the functions w(r) and
∆Ψ(r) were monitored. After the completion of each sth
iteration, the change of the effective potential ∆Ψ(r) and
the effective monomeric second virial coefficient

B∗ = 2π

∫
(r)

drr2{1− e−[upp(r)+∆Ψ(r)/kBT ]} (28)

was checked. In addition, we control the bead-bead in-
trachain energy

Upp ≡ Ψ(r1, ..., rN ) =
N∑
α<β

[upp(rαβ) +∆Ψ(rαβ)]. (29)

In the general case, both B∗ and Upp depend on the num-
ber of iterations, s, and are calculated as values averaged
over km Monte-Carlo steps. Disappearance of systematic
trends in ∆Ψ(r), B∗, and Upp is the criterion of conver-
gence of the iteration procedure. Generally this occurs af-
ter two or three iterations. Typical example of the Upp
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Fig. 2. Time evolution of the intrachain effective energy per
monomeric unit for three different values of N at particle den-
sity ρd = 0.8 and size ratio γ = 5. The time-averaged values of
〈Upp〉/N are presented near the curves. The data are obtained
by the MC/RISM method with the HNC-type potential for the
Model 1.

behavior is shown in Figure 2 for the hard-core chains
(Model 1) with N = 32, 64, and 96 at ρd = 0.8 (Φ = 0.419)
and γ ≡ σd/σp = 5. We can see that Upp has quite large
fluctuations at s ≤ 3, and after this it reaches a final
level, about which it fluctuates randomly. For this steady
state, calculation of all the global averages was made. As
a rule, the total number of iterations was s = 100÷ 200.
Namely, for N = 96 the full number of MC moves was
kms = 1.8× 109.

3 Results of calculations

3.1 Dependence on the density of particles

Let us define the so-called expansion factor of a polymeric
coil

α2 =
〈R2(N, ρd)〉

〈R2(N, 0)Θ〉
(30)

where the index Θ indicates the absence of excluded vol-
ume interaction (σp = 0). Note that the value of α2 is
one of the main characteristics of the coil. In Figure 3 we
present α2 as a function of the volume fraction of colloidal
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Fig. 3. α2 vs. particle packing fraction Φ for CBFM polymer
chain with N = 32 monomeric units at size ratio γ = 5. The
data are obtained by the MC/RISM method for the Model
1, using the HNC closure (Eq. (13)) and the HNC-type effec-
tive potential (Eq. (12)) as well as the PY closure (Eq. (15))
and the PY-type effective potential (Eq. (14)). In addition,
the results corresponding to the Ballone-Pastore-Galli-Gazillo
(BPGG) closure relation (Eq. (31)) and the HNC-type poten-
tial (Eq. (12)) are presented.

particles, Φ = πσ3
dρd/6, for the 32-unit chains; the ratio

of the hard-core diameters of particles and chain beads,
γ = σd/σp, is chosen to be γ = 5. The data shown in
Figure 3 were obtained for the Model 1, using the HNC
closure (Eq. (13)) and the HNC-type effective potential
(Eq. (12)) as well as the PY closure (Eq. (15)) and the
PY-type effective potential (Eq. (14)). In addition, in Fig-
ure 3 we present the results corresponding to the Ballone-
Pastore-Galli-Gazillo (BPGG) closure relation [43]

c(r) = h(r)− ln[h(r) + 1] + [
15

8
y(r) + 1]8/15

− y(r) + 1− u(r)/kBT,

y(r) = h(r)− c(r) (31)

and the HNC-type potential. The values of α2 are seen
to drop in all cases. Qualitatively similar results were ob-
tained for other hard-core chains with N = 64 and 96. The
HNC, PY, and BPGG results coincide within the simula-
tion statistical errors (≈ 5%), and go through α2 = 1 at
Φ ≈ 0.27 when the chain behaves like an ideal (unper-
turbed) Gaussian chain. At this particular density of col-
loidal particles, the medium-induced intrachain attraction
effectively compensates the intrachain excluded volume in-
teraction. The further growth in Φ leads to a diminishing
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Fig. 4. The normalized effective monomeric second virial coef-
ficient B∗(Φ)/B∗(0) vs. Φ for N = 32 and γ = 5. The data are
obtained by the MC/RISM method for the Model 1, using the
HNC closure (Eq. (13)) and the HNC-type effective potential
(Eq. (12)) as well as the PY closure (Eq. (15)) and the PY-type
effective potential (Eq. (14)). In addition, the results corre-
sponding to the Ballone-Pastore-Galli-Gazillo (BPGG) closure
relation (Eq. (31)) and the HNC-type potential (Eq. (12)) are
presented.

of the mean chain size, i.e., to a compression of the poly-
meric coil.

Thus, we observe that the hard-sphere medium can
produces an effective attraction between polymeric units,
which themselves are of the hard-core nature. This
medium-induced attraction may be the physical origin of
the key results of our calculations.

The appropriate measure of the medium-induced in-
trachain interaction is the effective monomeric second
virial coefficient B∗ given by equation (28). The value of
B∗ as a function of Φ is shown in Figure 4. Again, we
do not find significant distinctions between the HNC, PY,
and BPGG predictions. Traditionally, B∗ is considered in
polymer physics as a measure of solvent quality. The case
B∗ > 0 corresponds to a good solvent, in which the poly-
mer swells; that is, α2 > 1. At B∗ < 0, the polymer is
generally collapsed, indicating a poor solvent. The case of
B∗ = 0 corresponds to a theta (Θ) solvent, in which the
polymer is ideal, i.e., α2 = 1. Figure 4 shows that B∗ de-
creases with Φ and crosses the Θ line at Φ ≈ 0.21; then it
becomes increasingly negative. In terms of the physics of
polymer solutions, this means that upon increasing den-
sity the hard-core medium becomes a poor solvent for a
polymer. However, comparison of Figures 3 and 4 shows
that for relatively short chains considered here the equal-
ities α2 = 1 and B∗ = 0 turn true at slightly different Φ.
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Fig. 5. A projection in the xy plane of the configurations
(“snapshots”) of 32 and 96-unit chains after s = 100 MC/RISM
iterations at ρd = 0.8 and γ = 5. The calculations are per-
formed for the Model 1.

The functions α2(Φ) and B∗(Φ) exhibit similarity: both
appear to be S-like curves.

Thus, the hybrid MC/RISM approach predicts the
compression of a polymeric coil immersed in the ather-
mal medium with increasing density of medium. It should
be emphasized here that, in our hard-core system, the
only incentive for such a behavior is the effective medium-
induced interaction between chain units. If density ρd
is high enough, we observe the polymer collapse for the
Model 1, i.e., the transition to the globular state. In gen-
eral, the same features were observed in the case of the
lattice MC many-particle simulations [12–14]. In Figure 5
we present some typical examples of the globular configu-
rations obtained for the Model 1 withN = 32 and N = 96
at ρd = 0.8 (Φ = 0.419).

Now let us consider the results obtained for the Model
2 (which seems to be a more representative model of a
realistic polymer chain). Figures 6 and 7 show the corre-
sponding values of α2 and B∗ versus packing fraction Φ,
calculated for N = 32 and the size ratio γ = 2.5 with the
HNC closure and the HNC-type solvation potential. Us-
ing the PY-type potential gives very similar results. One
can see that, although a sufficiently strong contraction of
the chain takes place at high particle densities (when B∗

approaches zero and even becomes negative), the polymer
sizes predicted by our hybrid MC/RISM method for the
Model 2 do not reach the Θ size at γ = 2.5, and even
more so at any other γ. Moreover, at high density, in-
creasing chain length leads to an increase in α2: as can
be seen from Figure 8, at Φ = 0.556 the value of α2

scales with chain length as α2 ∝ Nδ, where δ ≈ 0.2. This
behavior corresponds to the known scaling of 〈R2〉 with
chain length, 〈R2〉 ∝ N2ν , observed for chains in a good
solvent, where ν ≈ 0.6. This leads us to speculate that
the variation with density of chain size at high colloid
densities may be quite dependent on the exact local fea-
tures of polymeric models. In other words, whether the
hard-core polymer chains collapse or not is a delicate bal-
ance between the repulsive, intrachain excluded volume
interactions and the medium-induced attraction. This ob-
servation is consistent with the predictions of the work
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Fig. 6. α2 as a function of Φ for N = 32 at γ = 2.5. The
data are obtained by the MC/RISM method for the Model 2,
using the HNC closure relation (Eq. (13)) and the HNC-type
effective potential (Eq. (12)).
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Fig. 7. The normalized effective monomeric second virial co-
efficient B∗(Φ)/B∗(0) as a function of Φ for N = 32 at γ = 2.5.
The data are obtained by the MC/RISM method for the
Model 2, using the HNC closure relation (Eq. (13)) and the
HNC-type effective potential (Eq. (12)).
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Fig. 8. log10(α2) vs. log10(N) at particle packing fraction Φ =
0.556 and γ = 2.5. The data are obtained for the Model 2
using the HNC closure relation (Eq. (13)) and the HNC-type
effective potential (Eq. (12)).

by Grayce on nonadditivity effects and many-body solva-
tion potentials based on “scaled particle theory” (SPT)
[44]. As has been shown by Grayce, there may not be
athermal polymer collapse in hard-sphere solvents, at least
for the chain models considered in this work.

Below we present some additional results obtained by
the self-consistent MC/RISM method for the chains with
various bond length.

3.2 Dependence on the bond length

Figure 9 shows α2 and B∗ for a hard-core 32-mer as func-
tions of bond length b, calculeted using the HNC clo-
sure relation and the corresponding solvation potential
at Φ = 0.419 and γ = 2.5. We find that in the region
b < 2.5σp the value of α2 decreases gradually as b is
increased and then begins to grow. At b ≈ 1.75σp and
b ≈ 3.75σp, α

2 crosses the Θ line, where α2 = 1. The
effective monomeric second virial coefficient becomes neg-
ative at b ≥ 1.2σp and appears to be a slowly increasing
function of bond length at b > 2.5σp. Thus, we conclude
that, in the athermal polymer/colloid system, the hard-
core chains may exhibit a nonuniversal behavior, depend-
ing on the bond length which determines the intrachain
excluded volume interactions in the model under consid-
eration. In the region 1.75 < b/σp < 3.75, the chain col-
lapses; beyond this region, the polymeric coil remains in
a swollen state. Below our calculations focus mainly on
b = 2.5σp, i.e., on the value of b corresponding to the
Model 1.
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Fig. 9. α2 and B∗ as functions of bond length at particle
packing fraction Φ = 0.419 and γ = 2.5. The data are obtained
for the HNC closure relation (Eq. (13)) and the HNC-type
effective potential (Eq. (12)).

3.3 Dependence on the particle size

Let us keep the volume fraction Φ of colloidal parti-
cles fixed and analyze the influence of particle size at
σp = constant. All the data presented in this subsection
were calculated for a rather dense medium (Φ = 0.419).
Clearly, at σd = 0 we deal with an isolated chain with ex-
cluded volume interaction; the latter is determined by the
hard-core diameter of a monomeric unit σp. Figures 10 and
11 present α2 andB∗ as functions of parameter γ = σd/σp,
calculated for the Models 1 and 2. The main body of
the calculations is performed for the HNC approxima-
tion, however, the comparison with data based on the PY
and BPGG approximations shows practical coincidence
of the results within the simulation statistical errors (see
Fig. 10a). It is seen from Figure 10 that the reduction of
mean chain dimensions takes place already at rather small
values of γ. In the case of the Model 1, polymer chain
attains Θ dimensions with increasing γ; further growth
of γ leads to the coil-globule transition at γ ≈ 3. After
that an opposite process takes place. Thus, we observe
the nonmonotonic dependence of mean chain dimensions.
The B∗ function manifests similar behavior (Fig. 11). For
the Model 2, the function α2(γ) is also nonmonotonic.
However, in this case we do not observe the chain collapse
at any γ (Fig. 10b).

Also, we can consider the chain size as a function
of the mean interparticle distance, which is estimated
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Fig. 10. (a) α2 vs. γ for N = 32 and Φ = 0.419. The cy-
cles are the result of the MC/RISM method using the HNC
closure and the HNC-type potential. The squares indicate the
results obtained by the MC/RISM method with the PY clo-
sure and the PY-type potential. The triangles are the result of
the MC/RISM method for the BPGG closure relation and the
HNC-type potential. The data are obtained for the Model 1.
Notice the minimum near γ = 3. (b) α2 vs. γ for N = 32 and
Φ = 0.419. The data are obtained for the Model 2, using the
HNC closure and the HNC-type potential.

as 2π/qmax, where qmax denotes the position of the first
peak of the structure factor

Sdd′(q) = 1 + ρdĥdd′(q). (32)

Figure 12 presents these data obtained for the Model 1.
It is seen that the plots α2 vs. γ (Fig. 10a) and 〈R2〉 vs.
2π/qmax (Fig. 12) are similar because q−1

max ∼ σd (see the
insert in Fig. 12).

Clearly, in the γ → 0 case we have a continuous struc-
tureless medium which does not affect the correlation
functions of embedded larger objects (i.e., polymeric units
with finite size). Therefore, all the chain properties are de-
termined solely by the bare potential. On the other hand,
the opposite case, when γ → ∞, corresponds to a single
chain trapped between impenetrable obstacles randomly
distributed in three-dimensional space (at Φ < 1). In this
system, there are holes (or empty volume) with character-
istic size ∼ (2π/qmax−σd), which is sufficient for any finite
N -unit chain to be trapped as a whole in one of these holes
(because at any N the volume of polymeric coil VN ∼ N3ν

is smaller than the volume of a hole ∼ (2π/qmax − σd)3).

2 4 6 8 10
-2

-1

0

1

 MC/RISM (HNC)

Model 1:  N=32  Φ=0.419  σp=0.2

B
* ( γ

)/
B

* (0
)

γ=σd/σp

Fig. 11. Plot of the normalized effective monomeric second
virial coefficient B∗(γ)/B∗(0) as a function of γ for N = 32
and Φ = 0.419. The error bars indicate the standard deviation
of the mean values. The calculations are performed for the
Model 1 using the HNC-type potential.
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Fig. 12. 〈R2〉 vs. 2π/qmax for N = 32 and Φ = 0.419. Insert:
2π/qmax vs. γ. The calculations are performed for the Model
1 using the HNC-type potential.
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Fig. 13. 〈R2〉 vs. N on a double logarithmic scale for ρd = 0.8
and γ = 5. The calculations are performed for the Model 1
using the HNC-type potential.

Again, the properties of the chain are obviously deter-
mined solely by the bare potential, so we can expect that
the mean size of the polymer is the same as of an isolated
chain. Although we have not made calculations for this
case, the respective tendency in α2 or 〈R2〉 is distinctly
seen in Figures 10 and 12. Similar features are observed
for B∗. As a result, we have the curves with the mini-
mum, i.e., nonmonotonic dependencies on γ. At γ & 1
and Φ < 1, there are holes of sufficiently large size. Since
from the point of view of conformational entropy the po-
sition of a chain in these regions is favorable, these regions
can be regarded as “entropic traps” or “entropic potential
wells”. Thus, it is natural to expect that due to the pres-
ence of such traps the chain will adopt the conformation
that is more compact than the conformation in an infi-
nite empty volume. Our analysis shows that this indeed
the case. The real question is what is the degree of this
shrinking and whether the chain conformation becomes
globular. Of course, the capacity of each entropic trap to
adsorb chain links is finite. Therefore, due to the excluded
volume of the links the variation of chain conformation
may not be solely a reflection of the change in medium
density and particle size, but rather a result of changes in
the local properties of polymeric models (bead size, chain
rigidity, bond length, etc.) which determine the effective
intrachain excluded volume.

3.4 Dependence on the chain length and size scaling

The simplest (“customary”) way of demonstrating the
scaling behavior of polymers is to plot the mean-square
size vs. the number of units in the polymer chain. Such a
plot is shown in Figure 13 for polymers (with N = 8÷96)
surrounded by particles at γ = 5 and ρd = 0.8. The
mean size R ≡ 〈R2〉1/2 of a polymer globule scales with N
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Fig. 14. The average intrachain static structure factor,
Spp(q)/N , versus σdqN

ν , where ν = 1/3. The curves repre-
sent the results for five different values of N (see right-side
part of the figure); ρd = 0.8 and γ = 5. For intermediate
q, the effective, medium-induced, intrachain interaction causes
the scattering function to behave like Spp(q) ∝ q

−1/ν that cor-
responds to the globular state of polymer chains. It is seen
that for σdq . 10Nν the curves coincide. The insensitivity to
N indicates that even ∼ 10 beads is near the scaling limit in
this q region. For larger q, the chain beads are uncorrelated
and Spp(q) → 1/N . At q → 0, Spp(q) → N . The calculations
are performed for the Model 1 using the HNC-type potential.

as R ∝ N1/3 at N � 1. Because we studied only a few
chains of finite length, it is very difficult to extract a con-
vincing result for the N dependence from our data; a more
extensive calculation involving much larger chains would
be useful. Nevertheless, in Figure 13 we see the trend in
data to approach the expected power law R2 ∝ N2/3 for
N > 32.

A more detailed scaling analysis of computer results
can be made by using the static structure factor Spp(q)
of polymer chains. Clearly, in an infinitely dilute sys-
tem “chain + particles” the function Spp(q) is certainly
nothing but the averaged intramolecular correlation func-
tion ŵ(q). The corresponding scaling plot of Spp(q)/N vs.

qN1/3 is presented in Figure 14 for various N . We find
excellent agreement with the expected behavior: it is seen
that there is a universal behavior for 1/q larger than a
mean bond distance; at large 1/q all the curves coincide.

Thus we conclude that, at high density of medium
consisting of hard-sphere particles, a flexible chain forms
a globule. If the chain length is large enough the com-
pact globule appears, which exhibits a number of universal
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Fig. 15. Average intrachain static structure factor of a hard-
core chain of length N = 32 at γ = 5 and various ρd, plotted
in standard Kratky form. The calculations are performed for
the Model 1 using the HNC-type potential.

features. In addition to the size scaling, it is possible to
observe constant value of the effective intrachain energy
per monomer unit (see Fig. 2).

The following two subsections present more details
concerning the globular structure.

3.5 Chain structure

Figures 15 and 16 show some typical medium-density and
particle-size results for the average intrachain correlation
function Spp(q) of a hard-core chain of length N = 32,
plotted in the standard Kratky form. As is seen from
Figure 15, at γ = constant the appreciable changes of the
chain structure as a function of particles density occur at
ρd & 0.4, which corresponds to the initial stage of rapid
shrinking of a polymer coil (see Fig. 3). The characteristic
scale of the structural changes, 2π/qσp, corresponds to
five and more monomers. From Figure 16 we can see that,
at fixed volume fraction Φ(= 0.419), structural changes
initiated by increasing of the particle size have the same
characteristic scale as in the previous case. The influence
of the medium on chain conformation is appreciable even
for rather small colloidal particles comparable in size to
polymer units.

3.6 Distribution of colloidal particles around chain

The distribution of colloidal particles around chain beads
is described by the pair correlation function gdp(r) =
hdp(r) + 1. Figure 17 presents this function for different
N at ρd = 0.8. Note that at ρd = 0.8 the polymer coil
is strongly compressed as compared to the isolated chain.
Figure 17 shows that the function gdp(r) has a high fist
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Fig. 16. Average intrachain static structure factor of a hard-
core chain of length N = 32 at Φ = 0.419 and various γ (γ = 1,
2.5, and 7.5), plotted in standard Kratky form. The calcu-
lations are performed for the Model 1 using the HNC-type
potential.
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Fig. 17. Particle-polymer pair correlation function gdp(r) cal-
culated by the MC/RISM method for ρd = 0.8 and γ =
5 at various N as indicated. The results are obtained for
the Model 1.

peak in the case of short chains. This means that the glob-
ule formed by relatively short chains has friable structure.
When N increases, the first peak of the function gdp(r)
drops. Hence, the globule becomes more dense. AtN ≥ 64,
the difference in distribution of particles around monomers
practically vanishes.
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Fig. 18. The intrachain medium-induced potential of mean
force for N = 32, ρd = 0.8, and γ = 5: (−−−) HNC theory for
colloidal particles and effective intrachain potential, (- - - -) PY
theory for colloidal particles and effective intrachain potential.
Note: the vertical axis is marked in units of kBT . The results
are obtained for the Model 1.

3.7 Medium-induced potential

As it is indicated above, the results obtained for mean
chain dimensions practically do not depend on whether
we use the HNC-type potential (Eq. (12)) or the PY-type
potential (Eq. (14)). The data shown in Figure 18 confirm
this. Note that for the bare hard-sphere potential used
here the medium-induced potential ∆Ψ coincides with the
full potential of mean force Ψ in the range r > σp. As it
can be seen from Figure 18, there is only a slight difference
between the two potentials. Hence, below we discuss only
the results for HNC-type potential.

It should be noted that medium-induced potentials
between chain beads have been analyzed in several pa-
pers (see, e.g., Refs. [23,26,44,45]). To test the relative
accuracy of the HNC and PY solvation potentials, Grayce
et al. [26] have considered the general trends in Ψ with
density for multiple-chain systems. Comparison with ex-
isting simulation data for the change with polymer den-
sity in the mean square end-to-end distance of flexible
chains shows that the HNC-type potential appears to be
slightly more accurate than the PY one for the hard-core
chains at low (or intermediate) densities ρ, while the PY-
type potential is generally more accurate for the system of
Lennard-Jones (LJ) chains. Static properties of flexible LJ
chains surrounded by LJ solvent particles with purely re-
pulsive interactions between the particles and chain beads
have been studied using the self-consistent MC/RISM

approach and direct molecular dynamics (MD) simula-
tions [45]. It was found that at relatively low solvent den-
sities (ρs . 0.4) the self-consistent MC/RISM results ob-
tained with the HNC approximation are almost identical
to those obtained with the PY approximation. In this case,
the differences between MC/RISM predictions and data
from the many-particle MD simulations are also almost
indistinguishable within the simulation statistical errors.
However, it should be born in mind that, since at low
(intermediate) densities the effective potentials are weak
relative to the thermal energy, the two potentials are in-
sufficiently different to produce markedly different results.
Indeed, at ρ� 1 (when Ψ � kBT ) the HNC and PY po-
tentials become equivalent by construction [23]. On the
other hand, at high density the two potentials may be, in
principle, quite different. For model polymer liquids, the
HNC potential can lead to a pronounced contraction of
the polymer chain at high densities, something not ob-
served in real experiments [26]. Use of the PY solvation
potential for polymer liquids predicts a mean chain size
that becomes nearly independent of polymer density or
can become slightly larger at high ρ [26]. These facts show
that, in the case of one-component dense polymer liquids,
the HNC-type potential is less accurate than its PY-type
counterpart. On the other hand, as has been shown in ref-
erence [45] for repulsive LJ chains in monomeric solvent,
the HNC approximation yields slightly more accurate pre-
dictions at ρs ≥ 0.5. Overall, the intrachain correlation
functions predicted by the MC/RISM method with the
HNC-type potential in a wide range of solvent densities
are in very good agreement with simulated data, that is
the molecular structure of the polymer chains surrounded
by monomeric LJ solvent is captured almost quantita-
tively. In the case of hard-sphere polymer/colloid systems
with large size ratio γ, the problem concerning the accu-
racy of solvation potentials is less clear. It would be very
instructive to perform the corresponding many-particles,
off-lattice simulations to compare the simulated results
with the theoretical predictions. At present we believe that
the results obtained for our systems using the two different
potentials coincide within the statistical errors (≈ 5%).

The functions Ψ(r) are presented in Figure 19 for var-
ious ρd at γ = constant. It is clear that Ψ(r) = 0 for all
r > σp when ρd = 0. At ρd > 0, the effective attraction
arises in the range r . 3σp. When ρd grows, the attrac-
tion in this range increases, while at greater r the po-
tential exhibits a long-range oscillatory behavior. Hence,
the polymer shrinkage induced by the increasing medium
density is due to the enhanced attraction of monomers at
the short distances and the expansion of the attraction ra-
dius of Ψ(r). For relatively short chains considered here,
the medium-induced potential has a range comparable to
the size of the chain. However, due to the screening effect
the ∆Ψ function does not depend onN for sufficiently long
chains (see below).

There is peculiarity in the effective potential calculated
for various diameters of particles at Φ = constant. Fig-
ure 20 shows that with growing γ (at σp = constant) the
depth of the attractive well situated at small r diminishes
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Fig. 19. The average effective intrachain potential of mean
force between sites of a linear polymer of N = 32 hard-core
beads of diameter σp = 0.2 in hard-sphere medium at γ = 5
(σd = 1) and various ρd as indicated. The data are obtained
by the MC/RISM method with the HNC-type potential. Note:
the vertical axis is marked in units of kBT . The calculations
are performed for the Model 1.

rapidly. At the same time, the potential Ψ(r) acquires a
long oscillating tail (see the insertion in Fig. 20). The pe-
riod of oscillations is close to the diameter of the particle
σd (i.e. these oscillations happen to be in phase with the
corresponding oscillations of the particle-particle correla-
tion function gdd(r)).

Results obtained for Ψ(r) under the same conditions
at different values of N are presented in Figure 21. We see
here that the effective potential reaches its final steady
shape at N ≥ 32. As we think, this result deserves a more
detailed discussion in the framework of general problem
concerning the application of medium-induced potentials
to the reduced description of polymers. This discussion
will be presented below.

4 Discussion

First of all we would like to discuss the following
point: what is the physical meaning of the self-consistent
medium-induced potential and is the use of such poten-
tial valid for the description of a polymer chain in dense
globular (collapsed) state?

The representation of the intramolecular effective po-
tential as a sum of the pair site(α)-site(β) components
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Fig. 20. The average effective intrachain potential of mean
force between sites of a linear polymer of N = 32 hard-core
beads of diameter σp = 0.2 in hard-sphere medium at Φ =
0.419 and various σd as indicated. The data are obtained by
the MC/RISM method with the HNC-type potential. Note: the
vertical axis is marked in units of kBT . The calculations are
performed for the Model 1.
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Fig. 21. The average effective intrachain potential of mean
force between sites of a linear polymer of N hard-core beads
of diameter σp = 0.2 in hard-sphere medium at γ = 5 (σd =
1) and ρd = 0.8. The data are obtained by the MC/RISM
method with the HNC-type potential. Note: the vertical axis
is marked in units of kBT . The calculations are performed for
the Model 1.
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∆Ψαβ depending on distances rαβ = |rα − rβ | (as well as
on w(r) and the structure of medium χdd′) implies the fol-
lowing assumption: the magnitude of ∆Ψαβ is completely
determined by the appropriate distance rαβ in a given
molecular conformation, but not by all other sites (their
influence is taken into account indirectly via a functional
dependence of ∆Ψαβ on w(r), i.e., via the average equi-
librium positions of other sites [23]). This is provided by
a construction of ∆Ψ(r1, ..., rN ): the procedure of aver-
aging involves only coordinates of particles, whereas the
coordinates of the molecule are taken as fixed. So, in ac-
cordance with this assumption, any pair of sites α and β
of an N -site molecule at equilibrium can interact in a spe-
cific way, as compared with other site-site interactions in
the molecule. Conclusions made on the basis of this state-
ment are very significant to elucidate the situations where
the so-called global conformational symmetry is broken.
Grayce and Schweizer [23] analyze some relevant exam-
ples. Thus, in the case of collapsed polymer we have an
equilibrium conformation, in which some monomers are
on average placed inside the globule, while others are on
average outside near the surface. As has been pointed out
in reference [23], in this case the total medium-induced
potential ∆Ψ(r1, ..., rN ) can be written as a sum of the
site-site contributions ∆Ψαβ without losing the distinc-
tion between the inside and outside monomers. This is
due to the fact that the inside monomers move in a dif-
ferent potential field in comparison with the outside ones.
This could be verified by using the results of our calcu-
lations presented in Figure 21 in the following way. Let
us divide our globule into two parts: a dense core and a
friable outer coat (shell). It is clear that the mean effec-
tive energy per monomeric unit in the core and in the
shell is different (because of the difference in the environ-
ment). At small N , the fractions of the inside and out-
side monomers in the globule are nearly equal. However,
as N increases, this ratio changes: the inside fraction be-
comes predominant. Consequently, the effective potential
also must change and attain some limiting shape at large
N . Such a tendency for ∆Ψ is indeed observed here (see
Fig. 21).

We can clarify the role and the meaning of self-
consistent determination of the medium-induced poten-
tial of mean force Ψ(r1, ..., rN ) regarding it as a functional
of the averaged correlation function w(r1, ..., rN ) (or, in-
versely, the w determination as a functional of Ψ). It is
worth-while to present the following simple reasoning. Let
us suppose that there are no restrictions imposed on (max-
imum) bond length in our CBFM polymer chain; that is
all monomers are regarded as non-bonded. In this case, we
actually deal with a subsystem of N free particles. Nev-
ertheless we will characterize the site-site correlations in
this N -particle subsystem by the same function w as in
the linked case, i.e., we will formally regard these parti-
cles as belonging to the united set of N bonded interact-
ing sites. On the other hand, from the actual viewpoint
we have ŵαβ = δαβ (or, in terms of the PRISM approxi-
mation, ŵ(q)) ≡ N−1

∑
α,β ŵαβ = 1 at any q. We imply

that the case in question corresponds to a bicomponent

system in which the density of our “traced” N -particle
subsystem ρp → 0 (although it is not the strict limitation
indeed). In addition, we restrict the subsystem of N par-
ticles by a very large but finite volume V (that provides
the Fourier transform w → ŵ). It is easy to understand
that the results corresponding to the actual and formal
considerations must be different. In the first case (when
ŵαβ = δαβ) the medium only renormalizes the bare po-
tential, so that each site-site interaction contribution Ψαβ
to the full potential of mean force of the N -particle sub-
system is given by

Ψαβ = −kBT ln[hpp′(rαβ) + 1] (33)

where hpp′ is found from equation (9). For an HNC-like
closure we have simply

Ψαβ = upp′(rαβ)− kBTρdcpd ∗ hdp(rαβ)

= upp(rαβ) + kBT [cpp′(rαβ)− hpp′(rαβ ]. (34)

Note that these equations are valid for medium that
consists of arbitrary particles (molecules). We can see
that in the case under consideration no “third” parti-
cle γ belonging to the N -particle subsystem could inter-
fere the interaction between any given pair of particles
α and β. To be more correct, the equilibrium configura-
tion probability distribution Ω0(r1, ..., rN ) of the set of N
particles immersed in a medium is formed without “ad-
justments” of the particle coordinates and the effective
potentials. On the other hand, if we consider the N -
particle subsystem as an N -site quasi-molecule, the func-
tions Ψαβ and Ω(r1, ..., rN ) are given by equations (18)
and (16), which are functionals of w(r1, ..., rN ). For ex-
ample, for N = 2, this gives ŵ(q) = 1 + sin(bq)/bq, where
b is some current (fixed) distance between the two par-
ticles (σp < b < V 1/3). Then, the medium-induced po-
tential ∆Ψ12 depends parametrically on b through the
two-site intramolecular correlation function w(r1, r2); that
is, ∆Ψ12 = ∆Ψ12(r; b). Solution of equation (8) for any
given b gives the potential ∆Ψ12 averaged over all possi-
ble positions of medium particles. When b is large enough
(namely, b > ξd where ξd is the density-density corre-
lation length in the medium), the constituent particles
of our quasi-molecule do perturb environment indepen-
dently. Otherwise, at b < ξd the perturbed regions over-
lap and this may drastically alter the potential ∆Ψ12 in
dense media [46]. In the case of free (“broken”) particles,
no such effects appear by definition. Regarding the one-
dimensional parametrical dependence ∆Ψ12 = ∆Ψ12(r; b)
we can readily find the equilibrium configuration prob-
ability distribution, Ω0(r1, r2), or the equilibrium site-
site distance, b0. It should be recalled here that b is not
an actual “chemical bond” but is a variational parame-
ter in the quasi-molecular model under consideration. As
usual, the equilibrium state is determined by the varia-
tional minimization of the Helmholtz free energy func-
tional F [Ω], i.e., by the condition δF [Ω0]/δΩ = 0. In our
case this is simply achieved by the minimization of the
one-dimensional functional F [Ψ(b)]. Note that the condi-
tion δF/δb = 0 is a self-consistent equation, because F
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depends parametrically on b through ∆Ψ . It is easily
understood that minimization of F is equivalent to the
Monte-Carlo sampling that is performed in the hybrid
MC/RISM method. So, we see the principal difference be-
tween the two models: in the case of “free” particles, the
shape of the potential surface Ψ(r1, ..., rN ) does not de-
pend on a particular configuration of the tracedN -particle
subsystem. On the other hand, for the quasi-molecular
model actual equilibrium shape of Ψ(r1, ..., rN ) is deter-
mined by the particular equilibrium configuration of N
particles, or vice versa. It is reasonable to suppose that
the difference pointed out here will be of importance in
the theoretical treatment of condensed-phase effects.

We can explicitly find the contribution of interparticle
interactions to the total effective potential in the quasi-
molecular approach. To this end, we write the full poten-
tial as

Ψαβ/kBT = Ψ0
αβ/kBT − Ψ

∗
αβ (35)

where Ψ0
αβ is the site-site effective potential of the free (un-

bounded) particles and Ψ∗αβ is the additional contribution
due to the “bonding”-mediated correlations between par-
ticles (regardless to the reality of bonds). Equation (34)
is valid for Ψ0

αβ. By taking into account equation (12) and

the RISM equations (7-9) it is possible to show that Ψ∗αβ
is given by

ω ∗ Ψ∗αβ ∗ ω = ρhαβρ− ω ∗ hαβ ∗ ω (36)

where ω = ρw. It is seen from equation (36) that Ψ∗ = 0
at w = 1 or N = 1, as it must be. If q → 0, then
Ψ̂∗(0) ∼ (N−2 − 1). Consequently, Ψ∗ introduces maxi-
mum contribution into Ψ at large N and large distances.
The Ψ∗ dependence on N becomes weaker when N in-
creases, as it is distinctively seen from Figure 21. Equa-
tion (36) serves as a good evidence that Ψ∗ represents
the influence of the indirect collective bonding-mediated
correlations between particles. Just this contribution stip-
ulates the additional effective attraction between particles
in dense media with the “nonlocal” entropic effects being
the incentive of this attraction.

Using the results of analysis of the self-consistent ef-
fective potentials, one may construct a hybrid simulation
technique for modeling of multiple-chain systems. For this
goal chains are to be treated as the units of a single com-
plex “supermolecule”. This “supermolecule” is described
by a single united intramolecular site-site correlation func-
tion W(r) or (in the PRISM approximation) by single
site-averaged correlation function w(r).

There are some other examples directly related to the
subject under discussion. In the Introduction, we have
referred to the papers that predict the localized states
of solvated electron in the framework of the RISM the-
ory [15,16]. One more example of the entropy-driven ef-
fects is given in calculations by means of a simple (non-
self-consistent) RISM approach for the athermal blends
of rods and long Gaussian chains [47] and semiflexible
chains with different aspect ratios [48]. As noted in ref-
erence [48], the contributions of volume changes to misci-
bility are due to entropic effects and can result in lower

critical solution temperature (LCST) behavior in certain
polymer alloys, as observed experimentally for polyolefin
alloys [49,50] and the polystyrene/poly(n-butyl methacry-
late) system [51]. One of the problems that illustrates the
“attraction through repulsion” principle has been exactly
solved. Frenkel and Louis [52] considered a simple two-
dimensional lattice-gas model of binary mixture consist-
ing of “small” and “large” hard-core particles. By trans-
forming to a grand-canonical ensemble, this binary system
with purely repulsive interactions can be mapped onto
a one-component lattice-gas Ising model with attractive
nearest-neighbor interaction between the “large” particles
(squares). This lattice model can again be transformed to
a two-dimensional Ising spin model solving in the case
of zero external magnetic field. The phase behavior of
such Ising-like models is known exactly [53,54]. The order-
disorder transition in the Ising spin model corresponds to
phase separation in the initial model. In this way Frenkel
and Louis [52] observed the purely entropy-driven demix-
ing transition in the square-lattice, hard-core mixture. Al-
though our model corresponds to infinitely diluted system,
nevertheless, it should manifest demixing of components
provided appropriate parameters chosen.

Several other aspects of the problem discussed here
are worth mentioning. Among them, the entropy effects
influencing the local conformational structure of flexible
molecules. Zichi and Rossky [55] and Talitskikh et al.
[56] used the RISM integral equation theory to study
molecular conformational equilibrium in solutions of small
molecules with internal degrees of freedom. It was found
that the average effect of solvent leads to appearance of
the solvent-mediated torsional potential of a purely en-
tropic nature. A second aspect covers the equilibrium
and dynamical properties of chains in the so-called dis-
ordered media, where the particles of the media are spa-
tially fixed impenetrable obstacles randomly distributed
in two or three dimensions. By using Monte-Carlo simu-
lations, it was shown that in this case the localization of
chains occurs [57,58]. This means that, for entropic rea-
sons, in larger holes one finds an increased density of chain
units, as compared to the small holes. The understand-
ing of conformational properties of chains in such media,
when the material is percolated, is very important. In ad-
dition, while moving between fixed randomly distributed
obstacles, a flexible polymer exhibits anomalous dynami-
cal behavior [57]. It is quite necessary to take these facts
into account in consideration of the static properties and
dynamics of polymers within the framework of a model
“polymer chain in an array of obstacles” [59–62].

5 Conclusion

Using the hybrid MC/RISM method, we have performed
rather extensive studies of static properties of flexible
polymer chains surrounded by colloidal particles with
purely repulsive hard-core interactions between the parti-
cles and chain beads. It has been shown that the medium-
induced collapse of a polymer may occur in such an
athermal system, similar to a polymer collapse in a poor
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solvent. Our analysis yields a simple “entropic” interpre-
tation of this transition. We have presented the detailed
study of the dependence of conformational properties of
the chains on the degree of polymerization, density and
size of colloidal particles. In general, our main results
are in agreement with lattice computer simulations [12–
14]. In addition, we have considered other closely related
examples of entropy-driven transitions.
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